
EGR 304 Wednesday, 2/26/2020

1

Interrupt example, Three interrupts (Interrupt 1 is highest priority)
Try again, with different priority (what was #3 is now #1)
There are no critical regions,
the longest instruction takes 1 ms to execute
Interrupts run with interrupts disabled
For interrupt #1, ܶଵ = 4 ms, ଵܶ= 1.0 ms, ଵܶା= 2.5 ms
For interrupt #2, ܶଶ = 60 ms, ଶܶ= 1.0 ms, ଶܶା= 2.5 ms
For interrupt #3, ܶଷ = 20 ms, ଷܶ= 2.5 ms, ଷܶା= 1.0 ms

Step 1: Check interrupt density. ଵ
ସ

+ ଵ

+ ଶ.ହ
ଶ

= ଷ
ଵଶ

+ ଶ
ଵଶ

+ ଵସ
ଵଶ

= ସ
ଵଶ

< 1.000 OK

Step 2: Find maximum latency for each interrupt, the ܶା values

Step 3: Find the interrupt interval constraint for each interrupt, start with highest priority. General formula is:

ܶା + ܰ ݅, ݔ ܶ < ܶ

௫ୀଵ

For interrupt #1 (݅ = 1) ଵܶା + ܰ 1,1 ଵܶ < ܶଵ 2.5 + 1 1.0 < 4.0 0 3.5 < 4.0 OK

For interrupt #2 (݅ = 2) ଶܶା + ܰ 2,2 ଶܶ + ܰ 2,1 ଵܶ < ܶଶ

But now I need ܰ 2,1 = ்ುమି మ்
்ುభ

= ିଵ
ସ

= ହଽ
ସ

= 15

2.5 + 1 1 + 15 1 < 60 18.5 < 60 OK

For interrupt #3 (݅ = 3) ଷܶା + ܰ 3,3 ଷܶ + ܰ 3,2 ଶܶ + ܰ 3,1 ଵܶ < ܶଷ

But now I need ܰ 3,2 = ்ುయି య்
்ುమ

= ଶିଶ.ହ

= 1 and I need ܰ 3,1 = ்ುయି య்
்ುభ

= ଶିଶ.ହ
ସ

= ଵ.ହ
ସ

= 5

1 + 1 2.5 + 1 1 + 5 1 < 20 9.5 < 20 OK

All three interrupt interval constraints are satisfied. Interrupts will always get serviced on time.

? ?

?

?

?

?

SUMMARY SLIDE

?

Critical Regions
Shared resources need to be protected from interrupts.

A critical region is a section of code that accesses a hardware resource that is not capable of being concurrently
accessed by more than one software process.

In a multiprocessor context the matter of critical regions is more complicated than discussed here. In this more
complicated case semaphores are usually used to allocate access to critical regions.

The quintessential example of a critical region is a multiple word global variable such as a long integer on an eight-bit
or sixteen-bit machine when this global integer variable is used to pass information to and from an ISR. (Global
variables are the primary method of sharing information with an ISR.)

Suppose the long integer contains 4 bytes with the hexadecimal value 00 00 01 00 hex (+256 decimal).
Suppose the main program is in the process of reading this variable and has already read the first three bytes (so it
has read 00 00 01). Suppose that during the machine instruction to read the third byte an interrupt is requested and
the ISR decrements this shared variable to 00 00 00 FF. (255 decimal).

1

2

EGR 304 Wednesday, 2/26/2020

2

Critical Regions
Shared resources need to be protected from interrupts.

A critical region is a section of code that accesses a hardware resource that is not capable of being concurrently
accessed by more than one software process.

In a multiprocessor context the matter of critical regions is more complicated than discussed here. In this more
complicated case semaphores are usually used to allocate access to critical regions.

The quintessential example of a critical region is a multiple word global variable such as a long integer on an eight-bit
or sixteen-bit machine when this global integer variable is used to pass information to and from an ISR. (Global
variables are the primary method of sharing information with an ISR.)

Suppose the long integer contains 4 bytes with the hexadecimal value 00 00 01 00 hex (+256 decimal).
Suppose the main program is in the process of reading this variable and has already read the first three bytes (so it
has read 00 00 01). Suppose that during the machine instruction to read the third byte an interrupt is requested and
the ISR decrements this shared variable to 00 00 00 FF. (255 decimal). Execution is now returned to the main
program which now reads the final byte (FF). The main program will receive the value of 00 00 01 FF (511 decimal).

Critical Regions
Shared resources need to be protected from interrupts.

A critical region is a section of code that accesses a hardware resource that is not capable of being concurrently
accessed by more than one software process.

In a multiprocessor context the matter of critical regions is more complicated than discussed here. In this more
complicated case semaphores are usually used to allocate access to critical regions.

The quintessential example of a critical region is a multiple word global variable such as a long integer on an eight-bit
or sixteen-bit machine when this global integer variable is used to pass information to and from an ISR. (Global
variables are the primary method of sharing information with an ISR.)

Suppose the long integer contains 4 bytes with the hexadecimal value 00 00 01 00 hex (+256 decimal).
Suppose the main program is in the process of reading this variable and has already read the first three bytes (so it
has read 00 00 01). Suppose that during the machine instruction to read the third byte an interrupt is requested and
the ISR decrements this shared variable to 00 00 00 FF. (255 decimal). Execution is now returned to the main
program which now reads the final byte (FF). The main program will receive the value of 00 00 01 FF (511 decimal).
This is wildly wrong. The main program should receive either the before-interrupt or after-interrupt value (256 or
255 decimal), but not 511 decimal. This error happened because a shared resource was being concurrently
accessed. Any code that accesses a shared resource is a critical region of code.

In a single-processor environment critical regions can be protected by disabling interrupts before beginning
execution of a critical region and re-enabling interrupts afterward.

SUMMARY SLIDE

3

4

EGR 304 Wednesday, 2/26/2020

3

Critical Regions
Shared resources need to be protected from interrupts.

A critical region is a section of code that accesses a hardware resource that is not capable of being concurrently
accessed by more than one software process.

In a single-processor environments critical regions can be protected by disabling interrupts before beginning
execution of a critical region and re-enabling interrupts afterward.

Other common examples of critical regions are access to the stack (or other memory structure such as a heap),
peripheral hardware, or access to a network connection (if shared with an ISR).

A disadvantage of disabling interrupts is that a critical region then prevents ALL interrupts when in reality it only
needs to typically prevent the one unique interrupt source that causes access to the shared resource when non-ISR
code needs access. Also, in multiple processor environments disabling interrupts on one CPU is not adequate to
protect the resource from the other CPUs. Semaphores provide a more sophisticated level of access control. You
should know that this technique exists. We will not cover semaphores in this introductory course. These types of
topics are usually covered in depth in the more advanced parts of a course on operating systems.

Co
pi

ed
 fr

om

pr
ev

io
us

 sl
id

e

5

6

EGR 304 Wednesday, 2/26/2020

4

7

8

EGR 304 Wednesday, 2/26/2020

5

Illustration is from the AVR datasheet

Most microcontrollers have a counter/timer
system—special support hardware for higher
speed operations.

Example, PWM with an analogWrite command
on the arduino.

Using the hardware counter/timer support systems—faster, higher resolution than task scheduler.

1.) Input capture event
When did an input pin change? Capture that information in a register from one of the high-speed timers

Examples of use:
Log the real time of an event to a higher precision than the tic clock gives.

Set up a pin to do an input capture and simultaneously an interrupt.
The ISR will read the real time to the resolution of the real-time clock, typically about 1 s.
The input capture also stored the timer register data when the pin changed. This can be used

to interpolate between the real-time-clock’s increments.
Could measure a short period or a frequency—can now deal with frequencies of 1000 Hz or so.

2.) Output compare event
Make something happen at a particular time. (With more resolution than tic clock system can deliver)
You can make the tic-clock itself with an output compare event.
Pulse width modulation
Any other pulse type applications.

3.) Combine input capture and output compare techniques to do indirect period or frequency measurements.
e.g. indirect period. (measure freq. and take reciprocal)
Set up an output compare to establish a time interval.
Set up an input capture to count pulses during that interval.

SUMMARY SLIDE

9

10

